
Software Engineering Knowledge Areas in Startup
Companies: a mapping study

Eriks Klotins, Michael Unterkalmsteiner, Tony Gorschek

Blekinge Institute of Technology, SE-37179, Karlskrona, Sweden
{eriks.klotins, michael.unterkalmsteiner, tony.gorschek}@bth.se

Abstract. Background – Startup companies are becoming important suppliers
of innovative and software intensive products. The failure rate among startups
is high due to lack of resources, immaturity, multiple influences and dynamic
technologies. However, software product engineering is the core activity in
startups, therefore inadequacies in applied engineering practices might be a
significant contributing factor for high failure rates. Aim – This study identifies
and categorizes software engineering knowledge areas utilized in startups to
map out the state-of-art, identifying gaps for further research. Method – We
perform a systematic literature mapping study, applying snowball sampling to
identify relevant primary studies. Results – We have identified 54 practices
from 14 studies. Although 11 of 15 main knowledge areas from SWEBOK are
covered, a large part of categories is not. Conclusions – Existing research does
not provide reliable support for software engineering in any phase of a startup
life cycle. Transfer of results to other startups is difficult due to low rigor in
current studies.
Keywords: Startup, software engineering, mapping, engineering practice, agile,
lean, small companies, development of software intensive products

1 Introduction

Recent developments in technologies have created an increasing demand for
innovative software products. Startup companies are addressing this need and gain
importance as suppliers of software-intensive products and innovation. The inherent
nature of software enables small companies to produce and launch software products
fast with few resources. However, most of startup companies fail before realizing any
significant achievements [11]. Partially this is due to market factors or financial
issues, however the impact of software product engineering and inadequacies in
applied engineering practices is not fully explored, and might be a significant
contributing factor for the high failure rates.

Chorev et al. [8] identify 16 key factors for a successful startup, such as political
and economical environment, marketing, idea, funding and product development
among others. Many authors [2, 3, 8, 12, 26, 41] address general issues of startups.
Only a few focus on how software engineering is done in startups. Yau et al. argue
that scaled down engineering practices solve problems present in larger, established
companies while ignoring specific challenges that emerge only in startup companies,

stating that different approaches altogether are needed for software engineering in the
context of startups [20].

In this paper we aim at identifying software-intensive product engineering
practices utilized in startup companies and mapping them to Software Engineering
Body of Knowledge (SWEBOK) [31] knowledge areas and categories, describing
both state-of-the art, and gaps in research on startup software engineering.
Furthermore, to analyze how identified software engineering knowledge areas support
the startup life cycle we use the four phase model proposed by Crowne [11] and map
identified knowledge areas to different phases in the startup life-cycle. By use of these
well-established taxonomies [2], [10] we show state-of-the-art and expose gaps for
further research, but with a clear and distinct focus on the software engineering
perspective.

This paper is structured as follows. Section 2 gives an overview of the field and
motivates the study. Section 3 details the research methodology we applied to identify
and map relevant papers. Section 4 reports results from the mapping. Section 5
answers the research questions and discusses the results. Section 6 concludes the
paper.

2 Background and related work
A startup company shares many features with small or medium enterprises such as
youth, market pressure and dynamic technologies [33]. However startups are different
due to their aim and the challenges they face [33]. In contrast to established
companies, who regardless of their size focus on optimizing an existing business
model, startups focus of finding one [26]. Sutton [33] defines a startup as an
organization that is challenged by youth and immaturity, extremely limited resources,
multiple influences and dynamic technologies and markets.

Crowne [11] had proposed a four phase start-up life-cycle model. Successfully
transferring from first phase to the last indicates that a startup has become an
established company. The model identifies distinct challenges at each phase that a
start-up must address to advance to the next stage. We seek to identify knowledge
areas supporting transfer trough start-up life cycle by addressing challenges identified
by Crowne [11].

Paternoster et al. [23] conducted a mapping study to characterize state-of the-art
research in startups. They conclude that only a minority of studies in the area are
dedicated to (software) engineering, and since 2000 when this gap was first identified
[33] it has been only partially filled.

Coleman et al. [9] conducted a grounded theory study to explore how software
processes are formed in a startup. This study concludes that there is not enough
resources to explore the best way to develop the software and startups use whatever
software process that supports their immediate business objective. Consequently, the
development process is heavily influenced by previous experiences of a person acting
as development manager [9].

Pino et al. [25] conducted a systematic review on software process improvement
(SPI) in small and medium organizations. The study is aimed at discovering what
approaches to SPI in small-medium companies exist. Although their study was not

aimed at startup organizations, they conclude that prescriptive approaches, such as
CMM and SPICE, are not suitable for small organizations. Therefore, they emphasize
the need for more lightweight and tailored approaches.

Several startup specific process models have addressed this need. For example,
LIPE [40] addresses immaturity, ad-hoc approaches and scalability of engineering
processes. ESSDM [4] proposes an iterative approach to build and validate multiple
product ideas simultaneously. The Helical model [13] supports innovation by
experimentation of multiple product ideas, frequent releases and synchronization with
other organizational processes.

Software Engineering Body of Knowledge (SWEBOK) characterizes content of
software engineering discipline and promotes consistent view to software
engineering. SWEBOK is organized in 15 main knowledge areas; each knowledge
area is organized in sub-categories. Although, SWEBOK is not specifically aimed at
startups it is widely recognized within software engineering community [31].

To understand the degree to which research supports software engineering in
startups, it is useful to map existing studies. One recent contribution is the mapping
study by Paternoster et al. [23], describing research on startups and providing a
characterization of software development in the startup context. However, their work
does not classify the identified work practices such that it can be understood what
software engineering problem is actually addressed. In contrast, our study aims at
identifying and classifying software engineering knowledge areas in startup
companies, enabling a) analysis and improvement of existing practices and b)
revealing opportunities for further investigation.

3 Research methodology
The mapping process consists of three activities: identification of relevant
publications, data extraction, and data mapping. We identify relevant publications by
an emerging systematic literature review method – snowball sampling [38]. For data
mapping we follow the recommendations by Petersen et al. [24].

3.1 Research questions

Our study is driven by the goal to understand to what extent engineering in startup
companies is supported by research. To pursue this goal we seek answers to the
following research questions:
RQ1: What is state-of-practice in terms of utilization of software engineering
knowledge areas in startups?
RQ2: What is the relevance and rigor of the studies reporting experiences from
software engineering in startups?

In order to structure the identified practices into knowledge areas, as well as
identify gaps in knowledge (RQ1) we use SWEBOK [31] as a software engineering
dictionary. Although SWEBOK was not created for startups, we lack alternatives, and
SWEBOK is considered the accepted SE subject area overview [6, 28]. To provide an
account whether the practices can be transferred to industry (RQ2) we assess rigor
and relevance [17] of the identified studies.

3.2 Mapping study design overview

Identification of primary studies: We used snowball sampling [38], defining the
starting set from an earlier and broader mapping study on startups [23]. We performed
only forward snowball sampling from the starting set, as earlier papers are likely to be
covered by the previous study by Paternoster et al. [23].

We screened the sampled papers to select studies that report on primary research
focused on software engineering practices in startups. At first, for each paper we
applied a sanity check filtering out duplicates, non-English and non-peer-reviewed
papers. We used titles and abstracts for screening; in ambiguous cases, we read the
full text. The screening criteria are summarized in table 1.
Table 1. Screening criteria

Inclusion criteria Notes Examples of
excluded
papers

A paper reports
primary research

With primary research we understand
studies that provide direct evidence about
the research question [16].

[15, 34]

A paper reports a
study in a startup
company

We have used definition by Sutton [33]
to differentiate between startups and
established companies.

[22, 32]

A paper addresses
software engineering

We use SWEBOK [31] to identify
software engineering topics

[34, 37]

A paper addresses a
challenge or a
practice

With practice we identify use of a
methodology, routine, tool or framework
pertaining software engineering. With
challenge we understand difficulty to
achieve intended product quality, scope,
budget or time constraints

[10]

We used Google Scholar to identify referencing papers, i.e. to perform forward

snowball sampling. The first author performed the screening of papers. Results of the
process were organized in a spreadsheet that was reviewed by the second and third
author.
Data extraction: Post identification of relevant studies data extraction was performed
with the primary goal to extract information indicating which knowledge areas are
explored in the study. We also extracted information pertaining to rigor – context
description, description of study design, validity discussion, and relevance –
information on subjects, study context, scale and research method according to the
assessment method by Ivarsson et al. [17].

3.3 Analysis

To answer our first research question (RQ1: What is state-of-practice in terms of
utilization of software engineering knowledge areas in startups?) we map the
extracted practices to SWEBOK [31] knowledge areas and categories. In the

mapping, we keep track on coverage – how many of knowledge areas and categories
are covered by evidence. Coverage, or lack of it, reveals gaps in current research. We
also use startup life cycle model by Crowne [11] to identify to what extent state-of-
practice covers all four phases of startup life cycle.

To answer our second research question (RQ2: What is the relevance and rigor of
the studies reporting experiences from software engineering in startups?) we
synthesize rigor, relevance and research type, and analyze number of cases per study.

3.4 Threats to Validity

Systematic reviews have a generic bias towards positive results as they get published
more often [5]. However, we do not consider this as a major threat as we especially
aim to identify gaps and do not address the performance of individual practices.
Another generic threat to mapping studies using snowball sampling is related to the
quality of the starting set [38]. As a starting set we have selected the 43 studies
identified by Paternoster et al. [23]. The set covers a rather broad period from 1994 to
2013, includes both journal and conference papers from multiple publishing venues.
Thus, the starting set follows all guidelines set forth by Wohlin [38].

We focused on forward snowball sampling, as earlier studies are likely to be
covered by the previous mapping study by Paternoster et al. [23]. Nevertheless, we
performed a backward iteration on the final set of papers to reduce the risk of missing
important studies. As a result, 241 papers were discovered. Subsequent screening
identified one [20] relevant study. Furthermore, we have conducted a review of gray
literature to screen further information pertaining to our research questions. This
resulted in one more paper [12], which we did however not include in the further
analysis because the described practices are already reported in other, peer-reviewed,
studies.

Threats to study selection are addressed by explicit inclusion and exclusion
criteria, and a detailed screening protocol. Explicit extraction templates guided the
data extraction process, thus ensuring uniformity of the extracted data. To avoid bias
set by personal opinions of the researchers executing the study, ambiguous cases were
discussed among the authors.

4 Results
As a result of the snowball sampling, we identified 558 papers, 14 of them passed the
screening process and were included for further analysis. The reasons for exclusion
break down to the following: 80 duplicates, 17 not written in the English, 126 not peer
reviewed (books, keynotes, blogs etc.), 354 not focused on startups, 50 not addressing
software engineering, 7 not describing a practice or challenge, 32 not available in full
text.

From the relevant papers we extracted 54 practices distributed among 11 of the 15
software engineering knowledge areas. Table 2 summarizes the identified primary
studies and respective SWEBOK knowledge areas. The coverage column shows how
many second level categories are covered by the papers (e.g. 6/8 means that two
categories out of total of eight in SWEBOK were not covered at all).

Table 2. Knowledge areas and relevant papers

Knowledge Area (KA) Coverage Covered categories
Software Requirements 6/8 Requirements Process [14]

Requirements Elicitation [1, 29]
Requirements Analysis [35]
Requirements Validation [1, 29]
Practical Considerations [19, 20]

Software Design 4/8 Software Design Fundamentals [1, 14, 29]
Key Issues in Software Design [18]
User Interface Design [1, 21, 30, 35]
Software Design Tools [1, 35]

Software Construction 3/5 Software Construction Fundamentals [7, 21,
29, 30, 36]
Managing Construction [7]
Practical Considerations [21]

Software Testing 2/6 Software Testing Fundamentals [18]
Test Process [19, 35]

Software Maintenance 1/5 Techniques for Maintenance [29]
Software Configuration
Management

3/7 Software Configuration Identification [1]
Software Release Management and Delivery
[1, 19, 29]
Software Configuration Management Tools
[29]

Software Engineering
Management

3/7 Software Project Planning [18, 29]
Software Project Enactment [39]
Software Engineering Management Tools
[27]

Software Engineering
Process

2/5 Software Process Measurement Techniques
[20]
Software Engineering Process Tools [1]

Software Engineering
Models and Methods

2/4 Modeling [1]
Software Engineering Methods [1, 13, 14,
21, 29]

Software Quality 1/4 Software Quality [18]
Software Engineering
Professional Practice

2/3 Professionalism [1]
Communication Skills [1, 19, 21]

Software Engineering
Economics

0/5

Computing
Foundations

0/17

Mathematical
Foundations

0/11

Engineering
Foundations

0/7

One of the main goals of research on startups is the transfer and widespread use of

the results [17]. Potential for transfer can be judged by measuring rigor and relevance.
The results reveal that most papers have high relevance, as they report studies
performed in actual startups. However, the rigor of these papers is low as they lack
contextual descriptions as well as in what manner the study was designed and
executed. Figure 1 summarizes contribution type, rigor and relevance.

Fig. 1. Overview of research type, rigor and relevance distribution

As shown in figure 1, left side, the majority of the discovered papers are
experience reports with low rigor, indicating a rather weak presentation of study
design, industrial context and validity threats. The right side of figure 1 shows that the
majority of the identified papers present results relevant for industry. The reported
studies are conducted in a real industry environment, on a representative scale and are
utilizing empirical research methods.

A study that investigates more than one case and compares findings among
multiple cases provides more generalizability. We extracted the number of cases
studied per paper and mapped them to publishing year in figure 2.

Fig. 2. Publishing years and number of cases per report

Rigor

Low
(0-1)

Medium
(1-3)

High
(3-4)

Relevance

Low
(0-1)

Medium
(1-2)

High
(2-4)

11

2

1

Experience
report

Model Philosophical
paper

Evaluation
research

1

Research type

1

9 1 11

Number of cases
per study

1994

Year

1

3

1996 1998 2000 2002 2004 2006 2010 2012 2014

6

9

12

15

n/a

2008

Table 3 summarizes the extracted publishing venues. A majority of the studies (60%)
are published as conference papers.
Table 3. Publishing venues

Publishing venue Papers
IEEE Software [1, 7, 30]
XP Conference [29]
HCI International Conference [35]
Lean Enterprise Software and Systems [4]
International Journal of Project Management [13]
International Conference on eXtreme Programming and Agile
Processes in Software Engineering

[14]

Canadian Society for the Study of Education conference [19]
Pacific Northwest Software Quality Conference [18]
Agile conference [21]
IEEE Computer [36]
Americas Conference on Information Systems [27]
SOFTWARE PROCESS—Improvement and Practice [20]

5 Analysis and Discussion

5.1 RQ1: What is state-of-practice in terms of utilization of software
engineering knowledge areas in startups?

The mapping of practices to SWEBOK (table 2) shows that the majority of the main
knowledge areas (11 out of 15) are addressed. However, a more detailed analysis
reveals that only 28 of 62 categories from the knowledge areas are covered. One
could argue that some of the knowledge areas, for example Mathematical Foundations
knowledge area (KA), may be of less interest for startups or some categories could be
more relevant than others. To better understand which knowledge areas and
categories are more relevant for startups, we use Crowne’s model of the startup life
cycle [11].

We use Crowne’s startup life-cycle model, in combination with the knowledge
areas proposed by SWEBOK [31], to analyze whether the state-of-practice addresses
software engineering challenges relevant for startups and to what extent such support
is still lacking.

During the startup phase in Crowne’s model, a company aims to build the first
version of a product [11]. Understanding and communicating the needs of the target
audience, and defining a development scope establish the foundation for further
software engineering. The Requirements Engineering KA aims to support activities
related to understanding needs and constraints placed on a software product, and is
addressed by [1, 14, 19, 20, 29, 35]. Identified knowledge areas cover all categories,
except Software Requirements Fundamentals and Software Requirements Tools. The
Software Requirements Fundamentals category provides underlying concepts for the
whole KA. For example, in this category the differentiation between functional and

quality requirements is introduced. May [21] argues that a key differentiator between
competitor products is an interaction experience, however the presence of specific
quality requirements was not reported in his study. We argue that a lack of research in
this area indicates an insufficient understanding of quality requirements’ role in
software engineering in the startup context.

Operating with very limited resources, a startup must carefully select the scope of
the first release. Both scope definition and assessment belong to the SWEBOK
Software Engineering Management KA, which is not addressed by any of identified
studies. We argue that the absence of practices addressing scope definition could be a
contributing factor to premature failure.

Following the startup phase, the stabilization phase [11] aims at improving the
product to a level where it can be decommissioned to any number of new customers
without causing any overhead on product development. The Software Design KA
provides support for improving internal qualities of the product and is addressed by
[1, 14, 18, 21, 29, 30, 35]. The Requirements Management category becomes relevant
to maintain product integrity while adding new features [11], however this category is
not addressed by any of identified studies.

After the startup and stabilization phases, the growth phase poses challenges like
expanding the team, ensuring transfer of know-how, and managing the product. The
Communication Skills category, addressing knowledge transfer within the team, is
covered by [1, 19, 21]. The Product Life Cycle and Portfolio Management categories
belong to the Software Engineering Economics KA, however none of the identified
practices address these categories. The Software Engineering Economics KA directly
addresses the relation between software technical decisions and business goals of the
organization. We argue that absence of practices belonging to this area reveals a key
gap in building viable software products in startups.

The maturity phase is the final phase on Crowne’s model and it takes place when
product development is robust and processes are predictable for day-to-day operations
and invention of new products [11]. The Software Engineering Process KA addresses
process introduction and improvement. Practices belonging to Software Process
Measurement Techniques and Software Engineering Process Tools categories are
reported in [1, 20]. Other categories of this KA are not covered by any of the
identified practices. We argue that at this phase, startups gradually mature towards
small-medium enterprises (SME), rendering research on software process introduction
and improvement in SME’s also relevant.

5.2 RQ2: What is the relevance and rigor of the studies reporting
experiences from software engineering in startups?

Studies conducted in a realistic environment, e.g. a startup company, have a larger
potential to provide useful results, compared to laboratory experiments [17]. A
research method that facilitates investigation in realistic contexts, with industry
professionals and on a realistic scale, contributes to industry relevance [17].
Moreover, the extent to which a study method is described contributes to the
understanding of results and the evaluation of potential benefits and risks prior to
application [17]. The rigor of the evaluation and presentation is also an indication to a
level of trust that can be put on the results [17].

We have found that most identified studies are conducted in collaboration with
actual startup companies, thus scoring high on relevance scale (figure 1). However,
research type analysis suggests that most papers are experience reports (figure 1) and
study only one case (figure 2). Further analysis shows that most of the papers fall into
the low rigor category (figure 1). This implies that a) a majority of the studies do not
compare and analyze data from multiple cases and b) results among different studies
are difficult to compare due to their low rigor. Therefore, the extent to which reported
results can be generalized is low, and transfer to different startup companies is
difficult.

6 Conclusions
We have mapped software engineering practices from peer-reviewed scientific papers
about startups to SWEBOK categories and to startup life cycle phases. This was done
in order to understand to what extent software engineering in startups is supported by
research. Results show that a surprisingly small number of papers address the core
software engineering knowledge areas in startups. Even though this gap was first
identified by Sutton et al. [33] more than a decade ago, very little has been done to
address it.

By means of a literature review we have identified 54 practices that, to some
extent, cover all critical knowledge areas. However, a majority of categories are not
addressed by research. We analyzed whether the reported practices are actually useful
for startups. Even though many knowledge areas are covered, we identified gaps in
practices supporting successful transition trough the startup life cycle, particularly in
market-driven requirements engineering, engineering scope definition, alignment
between technical decisions and business goals, software architecture, and
implementation of software engineering process.

The analysis of transferability of practices shows that the majority of studies are
conducted in a realistic environment, thus providing relevant results. However the
rigor of identified studies is low due to insufficient descriptions of applied research
methods and poorly reported study contexts. In such an applied field as software
engineering, the ability to transfer results from one environment to another is critical
[17]. As a result, a lack of rigor makes this transfer difficult or even dangerous for
two reasons. First, contextual information enables a company to see if a good practice
or lesson reported is relevant in their context. Second, as study design details are
missing the level of trust in how the study was performed is hard to judge. This result
confirms similar conclusions by Paternoster et al. [23].

We conclude that existing studies, addressing software engineering in startups, are
insufficient to support all engineering aspects and do not create a solid body of
knowledge. Moreover, results from existing studies are hard to transfer to startup
companies due to an inadequate level of reporting rigor.

While the mapping of engineering practices presented in this paper can serve as a
basis, more empirical research with focus on product engineering in the start-up
context is required to address the identified gap. Even though performing research in
startups is difficult due to rapidly changing environment, more primary studies are
needed to understand how software-intensive product engineering is performed in

startups. Completing the picture on what practices are actually used in startups and
what impact said practices had on product engineering process would be a first step.
Identifying inadequacies in used practices and proposing remedies are our mid-term
goals.

7 References

1. Ambler, S.: Lessons in agility from Internet-based development. Software,
IEEE. 19, 2, 66 – 73 (2002).

2. Blank, S.: Embrace failure to start up success. Nature. 477, 7363, 133 (2011).
3. Blank, S.: The four steps to the epiphany. K&S Ranch; 2nd edition (2013).
4. Bosch, J. et al.: The early stage software startup development model: A

framework for operationalizing lean principles in software startups. Lean
Enterprise Software and Systems. pp. 1–15 (2013).

5. Brereton, P. et al.: Lessons from applying the systematic literature review
process within the software engineering domain. J. Syst. Softw. 80, 4, 571–
583 (2007).

6. Budgen, David Turner, Mark Brereton, Pearl Kitchenham, B.: Using Mapping
Studies in Software Engineering. Proceedings of PPIG, 2008. pp. 195–204
(2008).

7. Carmel, E.: Rapid development in software package startups. Proc. 27th
Hawaii Int’l Conf. System Sciences. pp. 498–507 (1994).

8. Chorev, S., Anderson, A.R.: Success in Israeli high-tech start-ups; Critical
factors and process. Technovation. 26, 2, 162–174 (2006).

9. Coleman, G., O’Connor, R. V.: An investigation into software development
process formation in software start-ups. J. Enterp. Inf. Manag. 21, 6, 633–648
(2008).

10. Consumano, M., Yoffie, D.: Competing on Internet Time: Lessons from
Netscape and Its Battle with Microsoft In This Issue. Free Press (2000).

11. Crowne, M.: Why software product startups fail and what to do about it.
Engineering Management Conference. pp. 338–343 IEEE, Cambridge, UK
(2002).

12. Dande, A., Eloranta, V.: Software Startup Patterns-An Empirical Study.
(2014).

13. Deakins, E., Dillon, S.: A helical model for managing innovative product and
service initiatives in volatile commercial environments. Int. J. Proj. Manag.
23, 1, 65–74 (2005).

14. Deias, R. et al.: Introducing XP in a start-up. International Conference on
eXtreme Programming and Agile Processes in Software Engineering. pp. 62–
65 (2002).

15. Fayad, M.E., Laitinen, M.: Process Assessment Considered Wasteful.
Commun. ACM. 40, 11, 125–128 (1997).

16. Group, S.E.: Guidelines for performing Systematic Literature Reviews in
Software Engineering. Engineering. (2007).

17. Ivarsson, M., Gorschek, T.: A method for evaluating rigor and industrial
relevance of technology evaluations. Empir. Softw. Eng. 16, 3, 365–395
(2010).

18. James L. Mater, B.S.: Solving the Software Quality Management Problem in
Internet Startups. Pacific Northwest Software Quality Conference. pp. 503–
512 (2000).

19. Kajko-Mattsson, M., Nikitina, N.: From Knowing Nothing to Knowing a
Little: Experiences Gained from Process Improvement in a Start-Up
Company. 2008 Int. Conf. Comput. Sci. Softw. Eng. October 2007, 617–621
(2008).

20. Kautz, K.: Improvement In Very Small Enterprises  : Does It Pay Off  ? Softw.
Process Improv. Pr. 226, 1998, 209–226 (2000).

21. May, B.: Applying Lean Startup  : An Experience Report. Agile conference.
(2012).

22. Mendes, E., Counsell, S.: Investigating Early Web Size Measures for Web
Cost Estimation. J. Syst. Softw. 77, 2, 157–172 (2005).

23. Paternoster, N. et al.: Software development in startup companies: A
systematic mapping study. Inf. Softw. Technol. 56, 10, 1200–1218 (2014).

24. Petersen, K. et al.: Systematic Mapping Studies in Software Engineering.
Evaluation and Assessment in Software Engineering. pp. 68–77 (2008).

25. Pino, F.J. et al.: Software process improvement in small and medium software
enterprises: a systematic review. Softw. Qual. J. 16, 2, 237–261 (2007).

26. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous
Innovation to Create Radically Successful Businesses. Crown Business; First
Edition (2011).

27. Shakir, S., Nørbjerg, J.: IT Project Management in Very Small Software
Companies: A Case of Pakistan. Americas Conference on Information
Systems. pp. 1–8 (2013).

28. Sicilia, M.-ángel et al.: The Evaluation of ontological representations of the
SWEBOK as a revision tool. 1–4 (1990).

29. Silva, A. da et al.: Xp south of the equator: An experience implementing xp in
brazil. Extreme Programming and Agile Processes. pp. 10–18 (2005).

30. Slinger Jansen, Sjaak Brinkkemper, Ivo Hunink, C.D.: Pragmatic and
Opportunistic Reuse in Innovative Start-up Companies. IEEE Softw. 42–49
(2008).

31. Society, I.C.: Guide to the Software Engineering Body of Knowledge Version
3.0 (SWEBOK Guide V3.0).

32. Sulayman, M. et al.: Towards a theoretical framework of SPI success factors
for small and medium web companies. Inf. Softw. Technol. 56, 7, 807–820
(2014).

33. Sutton, S.M. et al.: The Role of Process in a Software Start-up. IEEE Softw.
17, 4, 33–39 (2000).

34. Tanabian, M.M. et al.: Building High-Performance team through effective job
design for an early stage software start-up. Engineering Management
Conference. pp. 789–792 (2005).

35. Tingling, P., Saeed, A.: Extreme programming in action: a longitudinal case
study. HCI International. pp. 242–251 (2007).

36. Wall, D.: Using open source for a profitable startup. Computer (Long. Beach.
Calif). 158–160 (2001).

37. Watson, K. et al.: Small business start-ups  : implications. Int. J. Entrep.
Behav. Res. 4, 3, 217–238 (2006).

38. Wohlin, C.: Guidelines for Snowballing in Systematic Literature Studies and
a Replication in Software Engineering. Evaluation and Assessment in
Software Engineering. (2014).

39. Yau, A., Murphy, C.: Is a Rigorous Agile Methodology the Best
Development Strategy for Small Scale Tech Startups? (2013).

40. Zettel, J. et al.: LIPE  : A Lightweight Process for E-business Startup
Companies Based on Extreme Programming. 255–270 (2001).

41. Getting Real The smarter, faster, easier way to build a successful web
application, http://37signals.com/.

